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Abstract:  

Crystalline porous materials have a variety of uses, such as for catalysis and separation. 

Identifying suitable materials for a given application can, in principle, be done by screening 

material databases. Such a screening requires automated high-throughput analysis tools that 

calculate structural properties for all materials contained in a database so they can be compared 

with search queries, grouped or classified. One important aspect of the structural analysis of 

materials such as zeolites and metal organic frameworks is the investigation of the geometrical 

parameters describing pores. Here, we present algorithms and tools to efficiently calculate some 

of these important parameters. Our tools are based on the Voronoi decomposition, which for a 

given arrangement of atoms in a periodic domain provides a graph representation of the void 

space. The resulting Voronoi network is analyzed to obtain the diameter of the largest included 

sphere and the largest free sphere, which are two geometrical parameters that are frequently used 

to describe pore geometry. Accessibility of nodes in the network is also determined for a given 
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guest molecule and the resulting information is later used to retrieve dimensionality of channel 

systems as well as in Monte Carlo sampling of accessible surfaces and volumes. The presented 

algorithms are implemented in a software tool, Zeo++, which includes a modified version of the 

Voro++ library. We present example applications of our algorithms and tools using zeolite 

frameworks currently listed in the Atlas of Zeolite Frameworks. 
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1 Introduction 

Porous materials contain complex networks of void channels and cages that are exploited 

in many industrial applications. The zeolite class of these materials is the most well-known as 

they have found wide use in industry since the late 1950s, with common applications as chemical 

catalysts and membranes for separations and water softeners [1,2,3,4]. There is increasing 

interest in utilizing zeolites as membranes or adsorbents for CO2 capture applications [3]. In 

addition to zeolites, metal organic frameworks (MOFs) [5,6] and zeolitic imidazolate 

frameworks (ZIFs) [7] have recently generated interest for their potential use in gas separation or 

storage [8,9]. A key requirement for the success of any nanoporous material is that the chemical 

composition and pore topology must be optimal at the given conditions for a particular 

application. However, finding the optimal material is an arduous task, since the number of 

possible pore topologies is extremely large. There are approximately 190 unique zeolite 

frameworks known to exist today in more than 1400 zeolite crystals of various chemical 

composition and different geometrical parameters (See Ref. 10). However, these experimentally 

known zeolites constitute only a very small fraction of more than 2.7 million structures that are 

feasible on theoretical grounds [11,12], of which between 314,000 and 585,000 are predicted to 

be thermodynamically accessible as aluminosilicates, with the remainder potentially accessible 

via elemental substitution [13,14]. Databases of similar or greater magnitude can be developed 

for other nanoporous materials such as MOFs or ZIFs. As a result, new automated computational 

and chemoinformatic techniques need to be developed to characterize, categorize, and screen 

such large databases.  
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Recently, automated approaches capable of performing analysis of large sets of porous 

materials have started to emerge. For example, Blatov and coworkers have pursued the concept 

of natural tiling of periodic networks to find primitive building blocks in zeolites [15]. The group 

of Blaisten-Barojas have developed zeolite framework classifiers using a machine learning 

approach [16] while Foster et al. have presented a method to calculate geometrical parameters 

describing pores in zeolite materials [17]. The latter two approaches both make use of the 

Delaunay tessellation. For a given arrangement of atoms in a three-dimensional domain, the 

Delaunay tessellation is defined as the unique tetrahedral mesh on the atom positions such that 

the circumsphere of any tetrahedron contains no other atoms. Thus, the Delaunay tessellation 

identifies a set of spheres that occupy the voids within the structure. Delaunay tetrahedra and 

Delaunay circumspheres can be analyzed to obtain descriptors of the void space.  

Foster et al. proposed an approach in which the circumspheres obtained from the 

Delaunay decomposition of a zeolite are analyzed to obtain two parameters frequently used to 

describe pore geometry in crystalline porous materials, namely the diameter of the largest 

included (Di) and the largest free (df) spheres [18]. The largest included sphere points to the 

location of the largest cavity in a porous material and measures its size. In contrast, the largest 

free sphere corresponds to the largest spherical probe that can diffuse through a structure and 

measures a minimum restricting aperture on a diffusion path. Foster et al. noticed that the largest 

Delaunay circumsphere corresponds to the largest included sphere, whereas the largest free 

sphere can be obtained by investigating the Delaunay circumspheres obtained for a zeolite 

structure. The analysis is as follows. The empty Delaunay circumspheres frequently overlap and 

the circular intersection defines the diameter of the restricting aperture connecting them. The 
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diameter of these apertures places upper bounds on the diameter of the largest spherical probe 

that can pass from one Delaunay circumsphere to the other. When contiguous spheres overlap, 

channel systems are formed. Analysis of such channels can, in principle, provide information on 

the largest free sphere for a given zeolite structure. However, the authors have not presented the 

details of the approach thus far.  

A contrasting approach has been recently proposed by Haldoupis et al. [19]. They 

calculated the largest included and free sphere diameters of zeolites and MOFs using a grid 

representation of the crystallographic unit cell of a material. Here, each grid point is assigned a 

distance to the surface of the nearest atom. The radius of the largest included sphere is then equal 

to the maximum value over all grid points. The largest free sphere is calculated with the 

multiple-labeling algorithm of Hoshen and Kopelman [20], which identifies and connects 

clusters of neighboring grid points with the assigned distance values above a threshold 

corresponding to a probe radius. Using these methods, Haldoupis et al. analyzed a hypothetical 

zeolite database containing more than 250 000 structures [21] as well as hundreds of MOFs. 

They also demonstrated an extension of the approach, where the distance grid is substituted with 

an energy grid obtained for a given probe, and then the same algorithm is used to estimate the net 

activation energy for diffusion of a probe through a material. The biggest disadvantage of the 

approach of Haldoupis et al., which we will address in the current study, is a high computational 

cost associated with computing the grid, which amount of up to few minutes per material [19]. 

 Other important geometrical parameters used to characterize geometry of crystalline 

porous materials are accessible surface area (ASA) and accessible volume (AV). The accessible 

surface area of a system (a network of atoms), originally defined by Lee and Richards [22], 
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represents the surface traced by the center of a spherical probe (with radius rprobe) as it is rolled 

along the atomic surface. Another parameter, accessible volume, can be similarly defined as the 

volume reachable by the center of the probe. Although these parameters only constitute two 

potential screening variables, they are of especially great interest when building tools for 

identifying optimal absorption materials. For example, Frost et al. [23], when studying hydrogen 

absorption in several metal organic frameworks (MOFs), found a strong correlation between the 

amount absorbed and the accessible surface area when operating at intermediate pressures. In 

addition, Frost et al. also demonstrated that at high pressures, the amount absorbed correlates 

strongly with free volume, a parameter with only slight definitional differences from accessible 

volume.  

Most current methods for calculating accessible surface area utilize a Monte Carlo 

integration approach based on the work of Shrake and Rupley [24]. They typically proceed as 

follows: by sampling points on a sphere (of radius ratom + rprobe) centered around each atom of the 

material, the ASA contribution of each sphere corresponds to the fraction of viable points times 

the sampling sphere's surface area. Depending on the exact method, different criteria for 

determining a sampled point's viability have been proposed. From a simple geometric 

perspective, a viable point should not lie within another sampling sphere. This criteria, utilized 

by Duren et al. [25], excludes surfaces inside other atoms and within channels that are too 

narrow to fit the probe. Another approach, employed by Do et al. [26], calculates the potential 

between the probe and the surrounding atomic network and classifies points with negative or 

zero potential as viable. Similarly, most current methods for calculating accessible volume 
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typically use a Monte Carlo approach in which the acceptance of sampled points depends on 

energy criteria. 

These criteria for accepting sampled points do not account for additional conditions that 

may lead to the overestimation of ASA and AV. For example, if atoms of a material define a 

cavity linked to a single channel, although a probe may fit inside the cavity, the narrowness of 

the channel can prevent the probe from ever reaching it. Because sampled points within these 

types of inaccessible pockets do not overlap with other sampling spheres, another condition is 

required to exclude these points. The problem of detection of inaccessible pockets is also faced 

when running molecular simulations to study diffusion or adsorption phenomena in porous 

materials [27,28]. Inaccessible pockets need to be excluded (or accounted for otherwise) from 

regions where guest molecules are placed during such simulations in order to reproduce 

experimental results. We have recently proposed two methods of detection of inaccessible 

pockets. One approach is based on visual analysis of abstract representations of porous materials, 

chemical hieroglyphs [29], which highlight accessible regions of a material. Another approach, 

which involves a grid-based front propagation technique executed to segment out channels and 

inaccessible pockets of a material, can be fully automated [30,31]. In this case, each point of the 

grid holds information about whether the probe can reside in the corresponding volume element, 

which is determined using the geometry-based or energy-based criterion. In either case, 

generating the grid representation of a material is a costly procedure that is not always justified, 

especially when one is interested in obtaining geometry-based estimates of ASA and/or AV for 

later sets of materials. Therefore, there is a need for fast approaches that determine the 

accessibility of pockets and exploit the resulting information in calculations of ASA and AV. 
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In the current contribution, we present a set of algorithms to calculate important 

geometrical characteristics of crystalline porous materials such as zeolites. We explore the 

Voronoi decomposition as an efficient technique to provide basic geometrical characteristics of a 

porous material and its void space as well as the pore accessibility information to be included in 

ASA and AV calculations. When performing a Voronoi decomposition, the space surrounding n 

points is divided into n polyhedral cells such that each of their faces is a plane equidistant from 

the two points sharing the face. Edges of such cells overlap with lines equidistant to neighboring 

points (three points in a general asymmetric case), whereas vertices of cells, the Voronoi nodes, 

are equidistant from neighboring points (four points in a general asymmetric case). The Voronoi 

network, built of such nodes and edges, maps the void space surrounding the points. The 

Voronoi tessellation is the dual of Delaunay tessellation, as the centers of Delaunay 

circumspheres correspond to nodes in Voronoi network. Analysis of such a network is fairly 

straightforward and can provide parameters such as the diameter of the largest free sphere as 

well as more detailed information about void space geometry and topology. The Voronoi 

decomposition has already been used in the analysis of crystalline materials [32] and their voids 

[33] as well as membranes [34] and has been suggested as a tool to investigate ion transport 

pathways in crystals [35].   

 Our implementation is based on a modification to the VORO++ software library 

developed by one of us [36,37].The resulting tool provides the Voronoi network supplemented 

with information relevant to analysis of the void space in porous materials, such as the maximum 

diameters of spherical probes that can travel along the edges of the network. Our modifications 

to the original version of VORO++  enable us to perform the Voronoi decomposition for periodic 
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systems with both rectangular and non-rectangular periodic unit cells. We present an efficient 

algorithm to calculate the diameters of the largest included and largest free spheres for a given 

structure. Moreover, we provide algorithms to determine accessibility of nodes of the Voronoi 

networks for a particular probe size as well as Monte Carlo integration of ASA and AV 

procedure that can use the resulting information. The discussed algorithms have been 

implemented in the Zeo++ package [38], which is demonstrated on a task of characterization of 

selected zeolites from the International Zeolite Association (IZA) database.   

2 Methods 

2.1 Calculation of the Voronoi network 

The Voronoi network is computed using a modified version of VORO++, an open 

source library for three-dimensional Voronoi calculations [36,37]. The library is based upon 

individually computing the Voronoi cell associated with each atom, which is internally stored as 

a collection of edges and vertices. The details of our implementation of the Voronoi 

decomposition are provided in the Supporting Materials. An example computation of the 

Voronoi cells for the orthogonal case of EDI zeolite and non-orthogonal case of NPO zeolite are 

shown in Fig. 1. 

During computation of the Voronoi network, various important parameters are tabulated 

for use in later analysis. In particular, for each edge and vertex, the minimum distance to an atom 

is stored. This distance can be defined as the distance to the atomic surface if radii of atoms are 

specified. Vertices are stored within the provided periodic unit cell, and for each edge, a periodic 

displacement vector (PDV) (i,j,k) is also stored that determines whether an edge connects two 
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vertices in a different periodic image. The i,j,k components of this vector point to the 

neighboring periodic cell in directions defined by the unit cell vector a, b, and c, respectively.  

The library can also handle chemical systems with atoms of various radii, making it 

possible to study materials with chemical elements often encountered in MOFs or ZIFs. To do 

this, it makes use of the radical Voronoi tessellation in which the Voronoi cell of a particle i with 

position xi and radius ri is given by the volume satisfying 

2222 ),(),( jjii rdrd −<− xxxx      (1) 

for all other particles j. The square weighting ensures that the computed cells are convex 

polyhedra – without this, the cells have curved boundaries, which is more difficult to address 

computationally. The radical Voronoi tessellation is a common approach to handle polydisperse 

particle arrangements and has been previously shown to be a good method of constructing a 

network for porosity calculations of unequal spheres [39]. 

Apart from applications discussed in this study, our library can be used to build numerous 

other automated, high-throughput tools for analysis of void space in porous materials [40].  

 

2.2 Analysis of the Voronoi network and characterization of a material 

The obtained Voronoi network represents the void space in a porous material. Analysis of 

such a Voronoi network may provide information about the largest opening within the structure, 

the largest spherical probe that can traverse through the structure, topology of channel systems, 

and other parameters of interest. Here, we present how this information can be used to obtain 

structural descriptors such as the diameter of the largest included sphere (Di), the diameter of the 
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largest free sphere (df), accessible surface area (ASA), accessible volume (AV) and the 

dimensionality of channel systems (dim). 

2.2.1 The largest included and the largest free sphere  

 The largest included sphere for a given structure is simply the largest distance assigned to 

the Voronoi nodes. The algorithm iterates over all Voronoi nodes in a periodic unit cell of a 

structure and finds the node with the largest distance to a neighboring atom. .  

 Analysis of the Voronoi network also provides information about the size of the largest 

spherical probe that can travel within the void space. This analysis involves investigation of 

connectivity between Voronoi nodes. For example, finding the diameter of the largest spherical 

probe that can travel between two nodes involves finding the path in the Voronoi network that 

leads through the nodes and edges with largest distances to atoms (the path through the sections 

of the void space with the largest opening). We find such an optimal path using an 

implementation of Dijkstra’s “lowest-cost path” algorithm [41]. Here, we relate the cost of 

accessing each node or passing through each edge with the corresponding distances to atoms 

assigned to the nodes and edges, such that the lowest cost is assigned to the largest opening in a 

structure.  

 The term ‘largest free sphere’ usually refers to the maximum size of a spherical probe 

that can travel through the void space in a structure by at least one periodic lattice translation. 

The void space may be shaped to form channels in many directions. Since crystalline porous 

materials form 3D networks built by replicating a periodic unit cell along each of three principal 

directions, a, b, and c, the travel path directions will always involve one or more of the principal 

directions. The largest free sphere for a given material can be defined as maximum of largest free 
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spheres calculated for three directions involving each of the principal directions (with 

corresponding diameters da, db and dc, respectively). For instance, when considering traversal in 

the a-direction, the probe must pass through edges connecting the unit cell with its neighboring 

copies in the -a direction (the source edges with periodic displacement vector (-1,*,*), where * 

denotes any number), then through the source nodes (ones connected to source edges), then 

through other nodes and edges within the unit cell to finally reach “the sink nodes” and exit the 

unit cell through the edges pointing out to the neighboring unit cells in the +a direction (the sink 

edges with periodic displacement vector (1,*,*) ). The largest probe that can travel along this 

path can be calculated from our adaptation of Dijkstra’s algorithm. In particular, the largest 

spherical probe that can travel from source edges to sink edges is calculated using edges 

contained within the periodic unit cell and any edges that do not lead to a unit cell with a 

different a-coordinate (edges with displacement vectors (0,*,*)). In other words, periodicity is 

disabled within the direction of interest but enabled within the other two directions. In some 

materials, channels corresponding to largest free spheres are not perfectly aligned with principal 

directions of the periodic unit cell. In these cases, the corresponding largest free sphere can travel 

along all of the principal directions, a combination of which is required to define the direction of 

channel. Taking the maximum of these defined largest free spheres (da, db and dc) as the 

definition of the largest free sphere for a material ensures that the latter gives the correct results 

despite the orientation of the travel path of the largest free sphere. Additionally, having identified 

the largest free sphere diameter, the largest included sphere diameter available to the largest free 

sphere can be calculated from a subset of the network available to this free sphere. Further 

details on implementation of the approach are presented in the Supporting Materials. 
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2.2.2 Determination of Node Accessibility 

In order to calculate accessible surface area and accessible volume with exclusion of 

inaccessible pockets, the accessibility of the void space must be determined. In this study, the 

void space is represented by a Voronoi network in which each Voronoi node is classified as 

accessible (constituent of a channel) or inaccessible (constituent of an inaccessible pocket). 

Although the periodicity of porous systems typically complicates analysis of their underlying 

networks, it simplifies the determination of node accessibility. Because channels must propagate 

through an infinite number of unit cells, each of which contains a finite number of Voronoi 

nodes, channels must also be periodic. As a result, a node in a Voronoi network constitutes a 

channel (and is therefore accessible) only if it is connected, directly or indirectly, to its periodic 

image in another unit cell. Furthermore, a node connected to a channel must also be part of the 

channel. From these basic premises, an algorithm for identifying probe-dependent channels 

arises as follows:  

1) Calculate the periodic Voronoi network for the unit cell of the porous material 

2) Remove all nodes and edges in the Voronoi network for which the assigned distance to the 

nearest atomic surface is less than rprobe (as these would not allow the probe to pass).  

3) Select an unvisited node as a starting point and record its periodic displacement vector (PDV) 

as (0, 0, 0). Using the edges leading directly from this node, place the ids and PDVs of all 

directly connected nodes on a stack. While the stack contains nodes, remove the topmost 

node and perform the following analysis: 

i) If the node is unvisited, record its ID and PDV and add all of its direct neighbors and 

their corresponding PDVs to the stack.  
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ii) If the node was visited with a different PDV, all the connected nodes are accessible.  

Once the stack is empty, if the nodes were not labeled as accessible, they are all inaccessible.  

4) Repeat step 3 until all nodes have been visited.  

Using this algorithm, each iteration of the 3rd step in which the nodes are accessible 

identifies the constituents of a channel.  

2.2.3 Dimensionality of channel systems 

 Dimensionality of a channel system is another important parameter describing a material 

as it provides information about the number of directions in which guest molecules can diffuse. 

Obviously, definition of a channel (or a valid diffusion direction) requires setting a threshold 

value describing the minimal probe size that can traverse it. Typically, a water molecule of a 

diameter of ca 2.8Å is used. Dimensionality of a channel system is usually established by visual 

inspection of a structure, but in the following paragraph we discuss how analysis of Voronoi 

networks can be used to automatically determine dimensionality of channels systems.  

 Determination of channel dimensionality arises naturally from a simple extension to the 

node accessibility algorithm outlined in the previous section. Whenever a node is encountered in 

two different unit cells, a “loop” through a periodic boundary has been found. Such a loop means 

that a node is connected to its copy in another periodic box and the difference in PDVs indicates 

the direction of a connecting channel. Therefore, when algorithm 2.2.2 is run and a node’s 

neighbors are added to the stack, a simple test should be performed to determine if any of the 

neighbors were already encountered with a different PDV. If so, the difference in PDVs should 

be recorded. For each channel that the algorithm identifies, the channel dimensionality (one, two 

or three-dimensional) can then be computed by determining the dimensionality of the subspace 
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spanned by the channel directions. If an iteration of step 3 does not identify any channel 

directions, the zero-dimensionality results from the existence of an inaccessible pocket. 

2.2.4 Calculation of Accessible Surface Area and Accessible Volume 

Having determined the accessibility of each Voronoi node, this information can be 

incorporated in an algorithm that calculates accessible surface area. The original ASA method 

utilizes a Monte Carlo integration approach where points are sampled on spheres (of radius ratom 

+ rprobe) centered on each atom. The ASA contribution of each sphere corresponds to the fraction 

of viable points times its surface area. Therefore, in order to exclude inaccessible pockets, the 

accessibility of Voronoi nodes must be extended to that of sampled points. Because Voronoi 

cells are convex polyhedra, a line segment can always be drawn from a Voronoi node to a point 

on a sampling sphere within the cell. If such a line segment only intersects the sampling sphere at 

the sampling point, the probe can move in a straight path from the sampled point to the Voronoi 

node. Because at least one such non-intersecting line segment exists, the accessibility of a point 

can always be determined by that of the surrounding nodes. Utilizing these key facts, an 

algorithm for determining accessible surface area is as follows:  

I. Perform a radical Voronoi tessellation for a set of spheres centered on each atom, where 

the ith sphere has radius ratom  i + rprobe.  

II. Determine the accessibility of each Voronoi node for a probe of radius zero.   

III. Randomly sample points on each sphere. For each sampled point: 

a. Determine whether the sampled point lies within another sampling sphere. If so, the 

probe would overlap with another atom and the sampled point is not viable.  
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b. If the point is still viable, determine in which Voronoi cell it lies and the cell’s 

corresponding central atom. Draw line segments from the Voronoi nodes of this cell 

to the sampling point. Imagine a sphere centered on the central atom sized such that 

the sampled point lies on its surface. The accessibility of the first Voronoi node 

whose line segment only intersects this sphere at the sampling point determines the 

point’s viability.  

IV. Multiply the fraction of viable points of III by the surface area of the sampling sphere. 

This quantity represents the ASA contribution of the atom. Add it to the total accessible 

surface area. 

One particularly important point is that the Voronoi decomposition uses the combined atomic 

and probe radii. This ensures that if a point within a Voronoi cell does not lie within the 

sampling sphere centered in the cell, it will be empty because of the d2-r2 criterion using during 

the radical tessellation. 

Only a slight alteration of the technique used to calculate ASA is required to calculate 

probe-dependent accessible volume. While the ASA calculation sampled points on spheres 

centered on each atom, the accessible volume algorithm differs in that points are randomly 

sampled across the entire unit cell. After a point is sampled, the distance between it and every 

atomic surface must exceed rprobe to avoid probe-atom overlap.  If this requirement is satisfied, 

the point’s viability can be determined in the same manner as in the ASA calculation using 

Voronoi nodes. The accessible void volume is then equal to the product of the fraction of valid 

sampled points and the unit cell volume. 

3 Results and discussions 
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 To demonstrate the application of the tools discussed here, we have calculated the 

diameters of the largest included and the largest free sphere in known zeolite frameworks 

contained in the Atlas of Zeolite Framework types [42] from the International Zeolite 

Association (IZA). The current database contains 194 unique frameworks for which atomic 

coordinates are available. These structures are hypothetical materials generated by converting 

experimental structures into pure silica counterparts before applying geometric optimization 

using the DLS76 program [43]. In our calculations, following Ref. 17, we have assumed radii of 

1.35Å for both O and Si atoms. 

 The obtained results for all 194 IZA zeolites are collected and presented in Table S-1 of 

Supporting Materials. Moreover, results for 29 structures not included in Ref. 17 are presented in 

Table 1. Our implementation of the free sphere calculation is fast and efficient. Typically, the 

analysis of one structure takes less than a second, and processing the entire database of 194 

zeolites took 17 seconds on an 2.4GHz Intel i7 desktop.  

 To verify our algorithm for calculation of diameters of the largest included and free 

sphere, we compared our results with the results for 165 zeolites obtained previously by Foster et 

al. [17] and Haldoupis et al. [19]. As shown in Figure S-5, our results are in excellent agreement 

with previous studies. Largest included sphere diameters for all 165 zeolites match the results of 

Haldoupis et al., with differences lower than 0.1Å, corresponding to the grid spacing used in Ref. 

19. For three structures, similarly to Ref. 19, we noticed deviations below 0.5Å, most likely due 

to slight differences in the crystal structures used in these sets of calculations. Similarly, the 

calculated free sphere diameters do not show important discrepancies when compared with the 

results of Haldoupis et al. However, for the zeolites AFN and RUT, our results were 0.5Å larger 
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than those of Foster et al. As already pointed by Haldoupis et al., in these zeolites the channels 

corresponding to the largest free sphere are not oriented along crystallographics axis and were 

not considered by Foster et al. Our free sphere algorithm calculates the diameter of the largest 

free sphere but it does not analyze the largest free sphere path. Therefore, the 

direction/orientation of the path and the corresponding channel is not available. However, as 

demonstrated by Haldoupis et al. in Refs. 19 and 21, the obtained information (the diameter of 

largest free sphere) is sufficient to select interesting materials from a database for a follow up 

characterization using molecular simulations methodology. 

 Real zeolites, either natural or synthetic, are not necessarily all-siliceous. They may also 

contain extra framework cations or other adsorbed phases which render changes in the crystal 

structure with respect to the ideal crystal. Our tool can be also used to compare different 

experimental and theoretical crystal structures. For example, our recent study [44], demonstrated 

how changes in the crystal structure, reflected by the changes of the largest free sphere diameter 

can influence adsorption and diffusion of methane in cage-type zeolites. 

 The implementation of accessible surface and accessible volume was first verified on 

example MOF materials included in the study of Duren et al. [25]. However, these materials do 

not have inaccessible pockets within the void space. Therefore, to apply the algorithms on a 

system with inaccessible pockets, the zeolite DDR was analyzed as depicted in Figure 2. 

Analysis of the accessibility of the Voronoi network for a probe of diameter of 3.2Å 

(representing a nitrogen molecule) revealed the existence of inaccessible nodes, resulting in the 

sampled surface area presented in Figure 2. As demonstrated in the figure, the DDR structure has 

two-dimensional channel systems spreading in both the a ([100]) and b ([010]) directions with a 
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corresponding largest free sphere diameter of 3.59Å. Two-dimensional channels are separated 

from each other along the c ([001]) direction and the intermediate space is filled with 

inaccessible pockets. The latter are connected to the channel system by channels of 2.57Å 

diameter, a value significantly lower than the selected threshold of 3.2Å. The calculation of 

accessible surface area and accessible volume takes on average only about 2 seconds. One can 

therefore use our tool to characterize large sets of materials with the desired sets of thresholds 

and parameters such as atomic and probe radii. Figure 3 presents histograms of calculated 

surface area and void volume for a set of 194 IZA zeolites using spherical probes of 1.6Å and 

1.4Å radii, respectively.  In each case, the calculations were preformed with and without 

exclusion of inaccessible pockets to obtain, respectively, accessible and total surface area and 

void volume. Generally, the number of zeolites assigned to particular bins differ in cases of total 

and accessible surface areas and void volumes. The latter fact clearly suggests that inaccessible 

pockets are common among IZA zeolites and therefore our (or a similar) approach should be 

used to correctly calculate ASA and AV. 

 To verify the channel dimensionality algorithm, we compared the results of our analysis 

with the information contained in the current online version of the IZA database. It is our 

understanding that the assignment of dimensionality of channels in the IZA database was 

performed manually by researchers and therefore does not use a precise threshold value 

describing a diameter of a valid channel. Typically, a water molecule is taken as a probe and a 

channel of diameter of roughly about 2.8Å is considered a valid channel. In our analysis, 

however, we have to use an exact number as a threshold value. In some cases, when the diameter 

of the largest channels in a particular direction is close to the threshold values, the qualitatively 
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different results can be obtained by slight variation of the threshold. For these reasons, we 

performed our analysis for a number of thresholds in the range of 2.6-3.0Å to find out if any of 

the obtained results matched the information of the IZA database. For only 7 out of 194 zeolites, 

our algorithm predicted different dimensionality than the database. In the case of three structures, 

ANA, CGF and IMF, our algorithm predicted no channels, 1-dimensional and 2-dimensional 

channels respectively, whereas IZA identified these as 3-, 2- and 3-dimensional. In these three 

cases, our algorithm underestimated dimensionality due to not taking into account channels of 

highly-non-circular cross-sections. Such channels cannot be taken into account in our model 

where we use a spherical probe model. In the case of four other structures, namely BOG, MON, 

OFF and SBE, our algorithm predicts 3-dimensional channel systems whereas IZA recognizes 2, 

2, 1 and 2-dimensional channels respectively. To investigate these cases, we generated pore 

landscapes for these structures corresponding to the probe of 2.8Å diameter. As seen in Figure 4, 

the channel system clearly allows the probe to travel in three directions positively supporting our 

results.  

 Our dimensionality analysis algorithm provides an efficient and automatic way to 

determine dimensionality of channels systems, and in general, a way to classify large databases 

of materials on the basis of the dimensionality of channel systems. Our analysis does not take 

into account the shape of a channel, for example, a straight channel and zig-zag channel are 

indistinguishable. Similarly, information about the angles between channels is not taken into 

account. Our algorithms, however, could be further extended to take into account these 

circumstances. One can envision an additional step that takes into account total length of a 
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channel such that a zig-zag channel would be seen as a longer path than a straight path 

connecting two nodes of Voronoi network.  

4. Discussion 

An obvious deficiency of the geometrical structural descriptors described in this article is 

the approximation that a spherical probe models the traversing molecule. In practice, most 

molecules of interest, including common solvents or gases, rarely have a spherical shape. We 

have recently proposed an advanced approach [45], in which a spherical probe is replaced with 

one resembling the shape and flexibility of a “real” molecule – a complex object built from solid 

blocks connected by flexible links. Such advanced probes are able to change shape during the 

traversal of a porous material, reaching areas not accessible to either a single large spherical 

probe or rigid molecular-shaped probes. We presented the problem as an Eikonal equation in 

configuration space, in which the cost of entering each point in configuration space corresponds 

to the local geometry. Although this approach can give accurate predictions of possible diffusion 

pathways and accessible volumes, its computational cost is much greater.  

The computational cost is one of the major factors differentiating grid-based and non-

grid-based approaches to the analysis of porous materials. For example, Haldoupis et al. reports 

that the time required to calculate the largest free sphere diameter is up to few minutes. With our 

current approach, we observe calculation times of up to few seconds. Our approach is therefore 

better suited for pruning large databases at the early stage of screening when less accurate 

approaches, such as those that assume the spherical shape of a probe or ones based only on 

geometry considerations, are acceptable. The more expensive, grid-based approaches have an 

advantage that they can relatively easy modified to include energy considerations [19,30,45] or 
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complex non-spherical-shape probes [45]. They may be better suited for more accurate screening 

of preselected sets of materials. Moreover, the accuracy of grid-based methods is typically 

controlled by grid spacing and therefore, high accuracy may require significant resources. At the 

same time, grid-based approaches can easily take an advantage of novel computing platforms 

such General Purpose Graphical Processing Units (GPGPU) [31] as calculation of a grid 

representing a material or a configuration space of a guest inside a material is a naturally parallel 

task. 

 Finally, we would like to stress that although our approaches to the analysis of porous 

materials are automatic and can be used in high-throughput setups, they do not release users from 

the responsibility of curation of the input data. In particular, experimental crystal structures of 

porous materials often contain additional species such as water or other solvents. Unless 

specifically desired, these species have to be removed before using our tools in order to obtain 

uncompromised descriptors of a material’s structure.   

5 Conclusions 

 The Voronoi network obtained by performing a Voronoi decomposition on atoms 

contained in a periodic unit cell of a crystalline porous material maps the void space of the 

material. The obtained Voronoi network contains information about the topology and geometry 

of a porous material and can be studied to retrieve structural parameters, descriptors and 

fingerprints. Such a Voronoi network is generated by our implementation of the VORO++ library 

that facilitates work with crystalline materials. Our library can perform Voronoi decompositions 

for periodic systems with rectangular and non-rectangular periodic unit cells and can also 

account for atoms of different sizes. In addition, it is also robust and may facilitate development 
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of tools for automatic and high-throughput analysis of porous materials, which are required to 

process a large number of structures contained in material databases.  

We have presented algorithms to calculate 1) the diameters of the largest included and 

largest free sphere, which are simple parameters describing geometry of the channel system in 

porous materials; 2) determine dimensionality of channel systems present in a material as well as 

3) use information contained in the Voronoi network to calculate probe accessible surface and 

accessible volume. These algorithms have been implemented in the Zeo++ software tool, which 

is available to the community, together with its source code, on free of charge basis. We expect 

that many approaches for deriving structural information and descriptors from Voronoi network 

will emerge in the future enabling Qualitative Structure Property Relationships (QSPR) types of 

studies of porous materials. 
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Figures and Figure captions 

 

Figure 1: Example calculation of the Voronoi networks for the (a) EDI zeolite in a rectangular 

unit cell, and (b) NPO zeolite in a non-rectangular unit cell. Oxygen and silicon atoms are 

shown in red and yellow respectively. The unit cells are shown in blue, and the computed 

Voronoi networks are shown in white. The edges of the Voronoi networks that protrude from 

the unit cell connect to neighboring periodic unit cells (not shown for clarity of the illustration). 

 

 

(a)  

 
(b) 

 



 

29 

 

Figure 2. Sampled points on the surface of DDR. Green and red points are respectively, 

accessible and inaccessible to a spherical probe of radius 3.2.  
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Figure 3. Histograms of surface area and void volume for a set of 193 IZA zeolites.  Surface 

area and void volume were calculated using spherical probes of radii of 1.6 Å and 1.4Å, 

respectively. Quantities denoted as accessible exclude the contributions corresponding to 

probe-inaccessible pockets.  
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Figure 4. Pore landscapes for four zeolites. Internal surface of pores highlighted in orange.  
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Table 1. Maximum included sphere diameters, Di, and largest free sphere diameter df for the 29 

known zeolite frameworks not listed in Ref. 17. 

Framework 
type 

Di df 

BOF 5.52 4.61 
BSV 5.11 3.78 
EZT 6.51 6.07 
FAR 6.30 2.41 
IHW 6.61 3.61 
IMF 7.28 5.38 
ITR 6.30 5.06 
IWS 8.19 6.60 
IWV 8.48 6.97 
JRY 4.53 4.34 
LTF 8.10 7.44 
MOZ 9.97 7.48 
MRE 6.30 5.53 
MSE 7.03 6.53 
MVY 3.70 2.88 
PUN 5.45 4.29 
SAF 6.60 6.13 
SBN 5.00 3.74 
SFS 7.46 5.86 
SIV 5.32 3.67 
SOF 5.08 4.36 
SSF 7.60 6.16 
STO 6.74 6.03 
STW 5.37 4.82 
SVR 5.79 5.03 
SZR 6.21 4.63 
TOL 6.31 2.30 
TUN 8.40 5.33 
UOS 5.79 4.18 

 


